Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Xue Li,^a* Lin Yan,^b Jing-Ping Wang^a and Jing Zhou^a

^aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ^bCollege of Pharmacy, Henan University, Kaifeng, Henan 475001, People's Republic of China

Correspondence e-mail: limingxue@henu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C}-\text{C}) = 0.008 \text{ Å}$ R factor = 0.040 wR factor = 0.072 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[*µ*-Bis(pyridine-2-carbaldehyde) (ferrocene-1,1'-diyldicarbonyl)dihydrazonato]bis-[dichloro(dimethylformamide)cadmium(II)]

The title compound, $[Cd_2Cl_4[Fe(C_{12}H_{10}N_3O)_2](C_3H_7NO)_2]$, has a twofold rotation axis passing through the Fe atom of the ferrocene spacer of the bis-tridentate ligand. The Cd^{II} atom is coordinated in a distorted octahedral geometry by carbonyl O, imine N and pyridine N atoms of the neutral bis-tridentate ligand, two chloride ions and an O atom from a dimethylformamide molecule. There are intramolecular $N-H\cdots Cl$ hydrogen bonds.

Comment

The chemistry of ferrocene and its derivatives has attracted much interest, mainly because of their stability, good solubility and unusual reactivity and reversible redox properties (Togni & Hayashi, 1995). We have been interested in the preparation and the coordination chemistry of new multidentate ligands which contain two or three chelating arms linked to a ferrocene spacer (Guo *et al.*, 2002). The coordination behaviour of these ligands is characterized by a degree of variability in the structures of their complexes (Li *et al.*, 2004). Here we report the crystal structure of (I), which is a trinuclear complex with a bis-tridentate ligand (H_2L).

In (I), the Fe atom lies on a twofold rotation axis (Fig. 1), and the trinuclear complex consists of neutral ligand H_2L wrapped around two Cd^{II} atoms with four chloride anions as a charge balance. The Cd atom has a distorted octahedral geometry coordinated by a tridentate arm (O1/N2/N3), two chloride anions and a dimethylformamide (DMF) molecule (Table 1). The C6–O1 and C7–N2 bond distances are consistent with mostly double-bond character. In contrast, the

© 2006 International Union of Crystallography All rights reserved Received 31 August 2006 Accepted 4 September 2006

metal-organic papers

C6-N1 bond length is within the range for normal single bonds (Li *et al.*, 2006). The chloride anion Cl2 not only engages in the coordination but also forms an intramolecular $N-H\cdots$ Cl hydrogen bond (Table 2).

Experimental

All reagents were commercially available and of analytical grade. CdCl₂ (0.114 g, 0.35 mmol) was added to a solution of H₂L (0.084 g, 0.175 mmol) in DMF (3 ml). The solution was layered with Et₂O, and after 3 d, red crystals of (I) were obtained (yield 41%). Calculated for C₃₀H₃₄Cd₂Cl₄FeN₈O₄: C 36.25, H 3.42, N 11.28%; found: C 36.44, H 3.33, N 11.45%.

V = 3591.0 (7) Å³

 $D_x = 1.837 \text{ Mg m}^{-3}$

 $0.20 \times 0.20 \times 0.20$ mm

3159 independent reflections

2171 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.018P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.79 \text{ e} \text{ \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation $\mu = 1.92 \text{ mm}^{-1}$

T = 293 (2) K

Block, red

 $R_{\rm int} = 0.042$

 $\theta_{\rm max} = 25.0^{\circ}$

Z = 4

Crystal data

 $\begin{bmatrix} Cd_2Fe(C_{12}H_{10}N_3O)_2Cl_4 \\ (C_3H_7NO)_2 \end{bmatrix} \\ M_r = 993.10 \\ Monoclinic, C2/c \\ a = 17.0582 (18) Å \\ b = 16.9636 (18) Å \\ c = 13.3243 (14) Å \\ \beta = 111.352 (2)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer ω scans Absorption correction: none 8838 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.073$ S = 1.023159 reflections 224 parameters

Table 1

Selected	geometric	parameters ((Å, °	') .
	0			

Cd1-N2	2.314 (4)	Cd1-Cl2	2.5366 (12)
Cd1-N3	2.377 (4)	C6-O1	1.226 (6)
Cd1-Cl1	2.4103 (15)	C6-N1	1.356 (6)
Cd1-O1	2.416 (3)	C7-N2	1.275 (5)
Cd1-O2	2.466 (4)		
N2-Cd1-N3	68.75 (14)	Cl1-Cd1-O2	88.78 (11)
N2-Cd1-Cl1	166.71 (9)	O1-Cd1-O2	85.05 (12)
N3-Cd1-Cl1	112.68 (11)	N2-Cd1-Cl2	92.06 (9)
N2-Cd1-O1	66.93 (13)	N3-Cd1-Cl2	99.85 (9)
N3-Cd1-O1	135.43 (13)	Cl1-Cd1-Cl2	100.52 (5)
Cl1-Cd1-O1	109.35 (9)	O1-Cd1-Cl2	86.29 (8)
N2-Cd1-O2	78.28 (13)	O2-Cd1-Cl2	168.98 (10)
N3-Cd1-O2	81.72 (13)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots Cl2^i$	0.86	2.38	3.173 (4)	154

Symmetry code: (i) -x, y, $-z + \frac{3}{2}$.

Figure 1

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level. Cd1A/N1A/Cl2A and unlabelled atoms are related to Cd1/N1/Cl2 and other labelled atoms by the symmetry operation $(-x, y, \frac{3}{2} - z)$. Dashed lines indicate hydrogen bonds.

All H atoms were positioned geometrically and refined as riding, with C-H = 0.93–0.98 Å, N-H = 0.86 Å, and $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(methyl C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXL97*; software used to prepare material for publication: *SHELXL97*.

This work was supported by the Natural Science Foundation of Henan Province (No. 0611011900).

References

- Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Guo, D., Han, G., Duan, C. Y., Pang, K. L. & Meng, Q. J. (2002). Chem. Commun. pp. 1096–1097.
- Li, M. X., Cai, P., Duan, C. Y., Lu, F., Xie, J. & Meng, Q. J. (2004). *Inorg. Chem.* **43**, 5174–5176.
- Li, M.-X., Zhou, J., Yan, L. & Wang, J.-P. (2006). Acta Cryst. E62, m2321– m2322.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Togni, A. & Hayashi, T. (1995). Ferrocenes. New York: VCH Publishers.